Development of method for multielement analysis of olive oil by ICPMS

Filip Pošćić¹, Željka Fiket², Niko Bačić², Mavro Lučić², Nevenka Mikac², Maja Jukić Špika¹, Mirella Žanetić¹, Zed Rengel³, Slavko Perica¹

¹Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split, Croatia; ²Division for Marine and Environmental Research, Ruder Bošković Institute, Zagreb, Croatia;

³School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

Introduction

Multielemental analysis of olive oil can be important tool in evaluation of its geographical traceability, as the elemental composition of soil is reflected in olives and in olive oil. However, whereas determination of elements in soil and plant is an easy task, it is not a case for olive oil, as only minor fraction of elements are transferred to the oil, and concentrations of trace elements are usually very low. An ideal instrumental technique to achieve this goal is inductively coupled plasma mass spectrometry technique (ICPMS), which enable multi-elemental analysis and very low detection limits.

In the present work microwave digestion and the recently proposed ultrasonic extraction method (Camin et al., 2010) for determination of elements in olive oil are compared.

Material and Methods

Preparation of olive oil: Centrifugal oil extraction from olive fruits by Abencor oil mill (mc2, Ingenierias y Sistemas) within 24 h after the harvesting. Six Croatian olive oils were used in the experiments.

Microwave digestion: Digestion of ~0.5 g of olive oil by 6 ml HNO₃ (Trace select, Fluka) in Microwave oven Multiwave GO (Anton Paar) and dilution to 50 ml by Milli-Q[®] water.

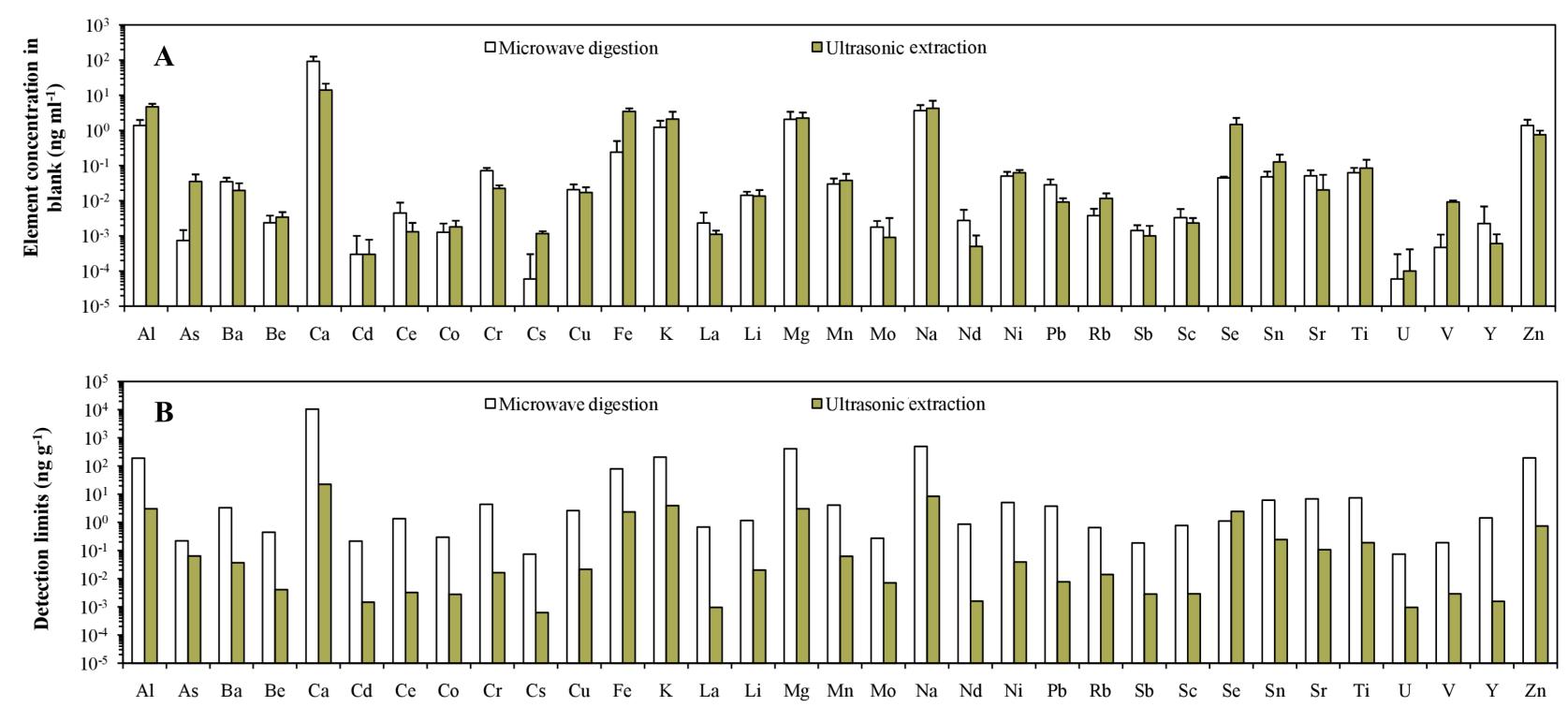
Ultrasonic extraction: Extraction of ~15 g of olive oil with 15 ml of (1 % HNO₃+0.2 % HCl) in the ulrasonic bath; centrifugation, isolation of water layer. *Measurements:* HR ICPMS (Element 2, Thermo), Measured elements (47): LR: ⁷Li, ⁹Be, ⁸⁵Rb, ⁹⁵Mo, ¹¹¹Cd, ¹²⁹Sn, ¹³³Cs, ¹⁶⁵Ho, ²⁰⁵Tl, ²⁰⁸Pb, ²⁰⁹Bi, ²³⁸U

Results and Discussion

Digestion of oil samples in the Multivave GO microwave oven is fast and efficient, but limited to 0.5 g of olive oil due to risk of over-pressure. Recoveries for elements present in oil standard were satisfactory (Tab. 1). However, due to the very low concentrations of elements in analysed olive oils, and small quantity of samples, all measured elements, except K and Rb, were below detection limit.

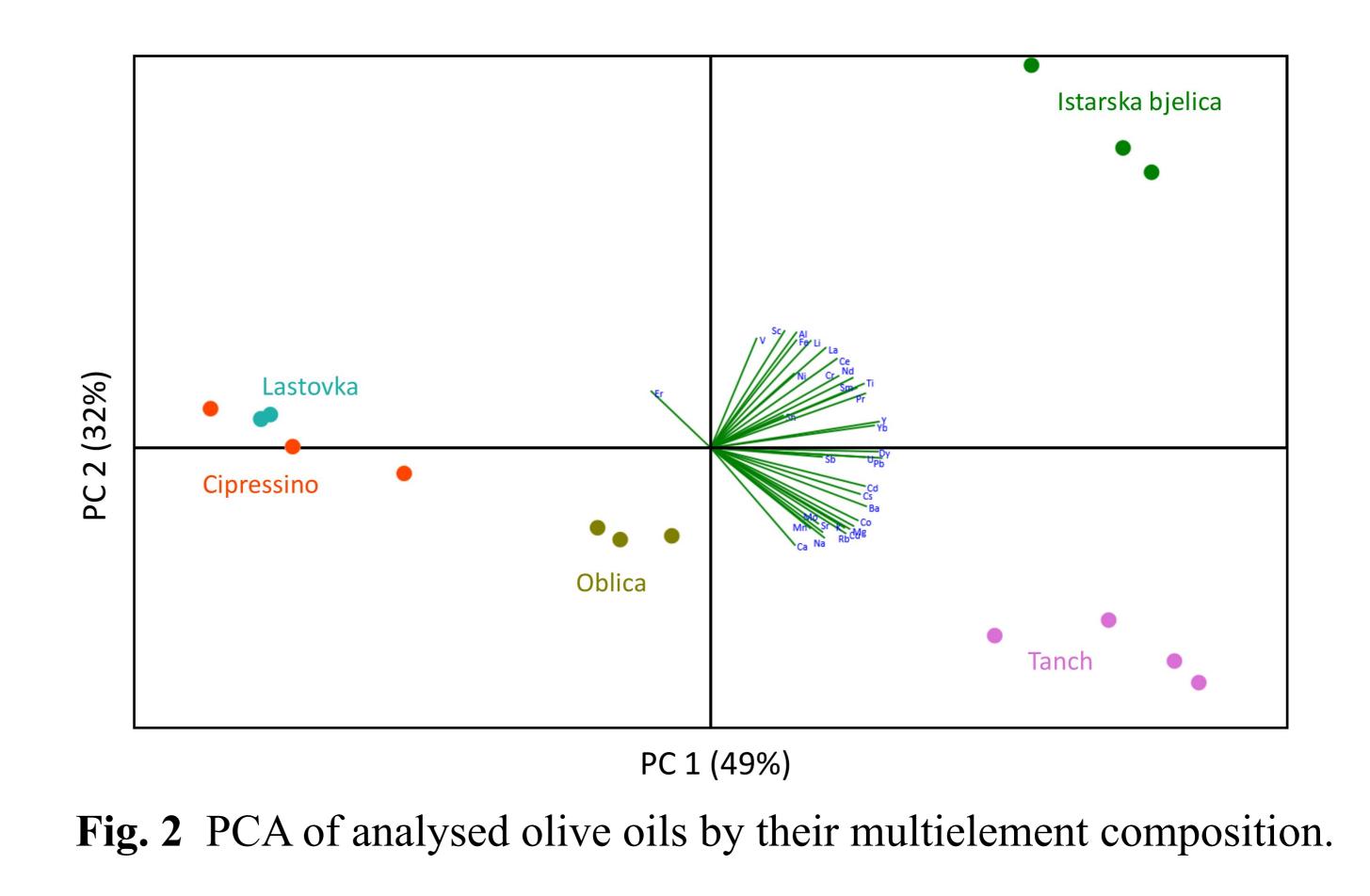
The ultrasonic bath extraction, in which elements are extracted from 15 g of oil, had much lower detection limits, although the concentrations of elements in blank solutions for both methods were similar (Fig. 1). Nevertheless, ultrasonic extraction had lower recoveries for some elements than microwave digestion (Tab. 1), which may indicate their partial extraction from oil. Due to higher quantity of oil, 34 elements were detectable in analysed oil samples (Tab. 2).

Concentrations of K and Rb in olive oils obtained by the two techniques were comparable proving that ultrasonic bath extraction is efficient for these two elements.


Tab. 2 Range of elements concentration in six olive oils analysed by ultrasonic extraction method.

Tab. 1 Elements recoveries (%) for two methods at 2 ng g^{-1} spiked oil standard.

MR: ²³Na, ²⁴Mg, ²⁷Al, ⁴²Ca, ⁴⁵Sc, ⁴⁷Ti, ⁵¹V, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni, ⁶³Cu, ⁶⁶Zn, ⁸⁶Sr, ⁸⁹Y, ⁹⁰Zr, ¹²¹Sb, ¹³⁸Ba, ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁵¹Eu, ¹⁵⁹Tb, ¹⁶³Dy, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁷¹Yb, ¹⁷⁵Lu


HR: ³⁹K, ⁷⁵As, ⁷⁷Se, ¹⁵⁷Gd

Internal standard: ¹¹⁵In; standard used for recovery experiments: Multi-element II mixture dissolved in oil (100 ppm), Merck, Certipur®

Pr < 0.001 0.005 Rb < 0.014 8.47 Sb < 0.003 0.011 Sc < 0.003 0.011 Sc < 0.003 0.048 Sm < 0.001 0.005 Sn < 0.05 0.128 Sr 0.02 0.505 Ti < 0.2 0.766 U < 0.001 0.002 V 0.001 0.021 This research was funded by UKE or							
InInInInBa 0.045 1.06 Ca 15.3 434 Cd 0.001 0.012 Ce 0.001 0.055 Ca 0.001 0.055 Ca 0.001 0.085 Cr $-5 = 1$ Cr -0.02 0.968 Cu 0.339 4.08 Mn $92 = 0$ 114 ± 29 Dy -0.001 0.005 Ma $39 = 0$ 107 ± 11 Er -0.001 0.002 Ni $80 = 2$ $67 = 32$ Fe <2.3 101 Fe <2.3 101 K 23.0 13337 Pb $69 = 1$ 55 ± 35 La <0.001 0.023 Sn $34 = 1$ 69 ± 24 Li <0.02 0.173 Mg 4.50 361 V $54 = 1$ 107 ± 8 Ma 32.0 718 Nd <0.001 0.020 Ni <0.001 0.020 Ni <0.001 0.005 Rb <0.014 8.47 Sb <0.003 0.011 Sn <0.05 0.128 Sn <0.001 0.002	^	Min (ng g ⁻¹)		Method			
Ca15.3434Al13+5Cd0.0010.012Cd 88 ± 1 81 ± 13 Co0.0010.055Cd 88 ± 1 81 ± 13 Co0.0010.085Cr 15 ± 1 95 ± 47 Cr <0.02 0.968Cu 88 ± 0 141 ± 45 Cs <0.001 0.005Mn 92 ± 0 114 ± 29 Dy <0.001 0.003Mo 39 ± 0 107 ± 11 Er <0.001 0.002Ni 80 ± 2 67 ± 32 Fe <2.3 101Ni 80 ± 2 67 ± 32 K23.013337Pb 69 ± 1 55 ± 35 La <0.001 0.023Sn 34 ± 1 69 ± 24 Li <0.02 0.173Ti 33 ± 1 -Mg 4.50 361V 54 ± 1 107 ± 8 Mo <0.007 0.242Na 32.0 718Ma <0.001 0.020The ultrasonic extraction proposeoil due to much lower detection limitPb0.0950.527DrThe ultrasonic extraction proposeRb <0.014 8.47 Nevertheless, the 34 elements fouComponent Analysis (Fig. 2) suggesSm <0.001 0.005Sn <0.02 0.055 Camin et al. (2010) Food ChemissTi <0.2 0.766 Camin et al. (2010) Food ChemissV <0.01 0.022 This research was funded by LIKE m	Al	<3	130		extraction	digestion	
Cd0.0010.012Al 13 ± 5 -Ce0.0010.055Cd 88 ± 1 81 ± 13 Co0.0010.085Cr 15 ± 1 95 ± 47 Cr<0.02	Ba	0.045	1.06	Elements	Mean ± SD	Mean ± SD	
Ce 0.001 0.055 Cd 88 ± 1 81 ± 13 Co 0.001 0.085 Cr 15 ± 1 95 ± 47 Cr <0.02 0.968 Cu 88 ± 0 141 ± 45 Cu 0.339 4.08 Mn 92 ± 0 114 ± 29 Dy <0.001 0.003 Mo 39 ± 0 107 ± 11 Er <0.001 0.002 Ni 80 ± 2 67 ± 32 Fe <2.3 101 Pb 69 ± 1 55 ± 35 La <0.001 0.023 Sn 34 ± 1 69 ± 24 Li <0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo <0.007 0.242 Na 32.0 718 Md <0.001 0.005 0.527 The ultrasonic extraction proposePb 0.095 0.527 The ultrasonic ecveries are notPb 0.093 0.011 Nevertheless, the 34 elements fouComponent Analysis (Fig. 2) sugges 102 0.001 Sn <0.001 0.005 128 Sn <0.02 0.505 116 Ti <0.2 0.766 U <0.001 0.002 V 0.001 0.021	Ca	15.3	434	Al	13 ± 5	_	
Cc 0.001 0.003 Cr 15 ± 1 95 ± 47 Cr <0.02 0.968 Cu 88 ± 0 141 ± 45 Cu 0.339 4.08 Mn 92 ± 0 114 ± 29 Dy <0.001 0.003 Mo 39 ± 0 107 ± 11 Er <0.001 0.002 Ni 80 ± 2 67 ± 32 Fe <2.3 101 Pb 69 ± 1 55 ± 35 La <0.001 0.023 Sn 34 ± 1 69 ± 24 Li <0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo <0.007 0.242 Na 32.0 718 Mo <0.001 0.020 Ni <0.020 The ultrasonic extraction propose- oil due to much lower detection limit elements obtained recoveries are not time ect.) is required.Nb <0.014 8.47 Nevertheless, the 34 elements fou Component Analysis (Fig. 2) sugges traceability of their origin.Sh <0.001 0.005 NiSh <0.02 0.505 TiTi <0.2 0.766 U <0.001 0.002 V 0.001 0.221	Cd			\mathbf{C}	00 1	01 ± 12	
Cr < 0.02 0.968 Ci 13 ± 1 35 ± 47 Cs < 0.001 0.005 Cu 88 ± 0 141 ± 45 Cu 0.339 4.08 Mn 92 ± 0 114 ± 29 Dy < 0.001 0.003 Mo 39 ± 0 107 ± 11 Er < 0.001 0.002 Ni 80 ± 2 67 ± 32 Fe < 2.3 101 Pb 69 ± 1 55 ± 35 La < 0.001 0.023 Sn 34 ± 1 69 ± 24 Li < 0.02 0.173 Ti 33 ± 1 $.$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo < 0.007 0.242 Na 32.0 718 Mo < 0.007 0.242 Na 32.0 718 Mo < 0.001 0.020 Ni < 60.014 8.47 Sb < 0.001 0.005 0.657 The ultrasonic extraction proposeRb < 0.014 8.47 Nevertheless, the 34 elements fouSc < 0.003 0.011 Component Analysis (Fig. 2) suggesSn < 0.02 0.505 Ti < 0.201 Sn < 0.02 0.505 Ti < 0.201 Ti < 0.2 0.766 < 0.001 0.002 V < 0.001 0.021 < 0.001 < 0.021				Ca	88 ± 1	81 ± 13	
Cs < 0.001 0.005 Cu 88 ± 0 141 ± 45 Cu 0.339 4.08 Mn 92 ± 0 114 ± 29 Dy < 0.001 0.003 Mo 39 ± 0 107 ± 11 Er < 0.001 0.002 Ni 80 ± 2 67 ± 32 Fe < 2.3 101 Pb 69 ± 1 55 ± 35 La < 0.001 0.023 Sn 34 ± 1 69 ± 24 Li < 0.02 0.173 Ti 33 ± 1 -Mg 4.50 361 V 54 ± 1 107 ± 8 Mo < 0.007 0.242 Na 32.0 718 Mo < 0.001 0.020 The ultrasonic extraction proposeNi < 0.001 0.020 The ultrasonic extraction proposeNi < 0.001 0.005 elements obtained recoveries are notRb < 0.014 8.47 Nevertheless, the 34 elements fouSb < 0.003 0.011 Component Analysis (Fig. 2) suggesSm < 0.02 0.505 TiSin < 0.02 0.505 Ti < 0.2 0.766 U < 0.001 0.002 V 0.001 0.021				Cr	15 ± 1	95 ± 47	
Cu 0.339 4.08 Mn 92 ± 0 114 ± 29 Dy <0.001 0.003 Mo 39 ± 0 107 ± 11 Er <0.001 0.002 Ni 80 ± 2 67 ± 32 Fe <2.3 101 Pb 69 ± 1 55 ± 35 La <0.001 0.023 Sn 34 ± 1 69 ± 24 Li <0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo <0.007 0.242 Na 32.0 718 Mo <0.007 0.242 Na 32.0 718 Nd <0.001 0.020 The ultrasonic extraction propose- oil due to much lower detection limit elements obtained recoveries are not time ect.) is required.Nb <0.003 0.011 Nevertheless, the 34 elements fou Component Analysis (Fig. 2) sugges traceability of their origin.Sn <0.001 0.005 Reference Camin et al. (2010) Food ChemistSr 0.02 0.505 Camin et al. (2010) Food ChemistTi <0.2 0.766 This records use funded by LKE ergV 0.001 0.021 This records use funded by LKE erg	Cr	< 0.02		Cu	88 ± 0	141 ± 45	
Cu 0.333 4.33 Dy <0.001 0.003 Mo 39 ± 0 107 ± 11 Er <0.001 0.002 Ni 80 ± 2 67 ± 32 Fe <2.3 101 Pb 69 ± 1 55 ± 35 La <0.001 0.023 Sn 34 ± 1 69 ± 24 Li <0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Ma <0.06 4.15 V 54 ± 1 107 ± 8 Mo <0.007 0.242 Na 32.0 718 NdNd <0.001 0.020 Ni <0.001 0.020 The ultrasonic extraction propose- oil due to much lower detection limit elements obtained recoveries are not time ect.) is required.Nevertheless, the 34 elements fou Component Analysis (Fig. 2) sugges traceability of their origin.Sh <0.001 0.005 Reference Camin et al. (2010) Food ChemistSr 0.02 0.505 This records was funded by LIK F. grV 0.001 0.021 This records was funded by LIK F. gr	Cs	< 0.001	0.005	N / La	02 ± 0	114 + 20	
Er < 0.001 0.002 Ni 80 ± 2 67 ± 32 Fe < 2.3 101 Ni 80 ± 2 67 ± 32 K 23.0 13337 Pb 69 ± 1 55 ± 35 La < 0.001 0.023 Sn 34 ± 1 69 ± 24 Li < 0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo < 0.002 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo < 0.007 0.242 Na 32.0 718 Mo < 0.007 0.242 Na 32.0 718 Nd < 0.001 0.020 Ni < 0.044 1.27 Pb 0.095 0.527 The ultrasonic extraction propose-pb 0.095 0.527 The ultrasonic recoveries are notrime ect.) is required.Nevertheless, the 34 elements fouSb < 0.001 0.005 Sm < 0.02 0.505 Ti < 0.2 0.766 U < 0.001 0.002 V 0.001 0.021 V 0.001 0.221	Cu	0.339	4.08	IVIn	92 ± 0	114 ± 29	
Fe < 2.3 101 Ni 80 ± 2 67 ± 32 K 23.0 13337 Pb 69 ± 1 55 ± 35 La <0.001 0.023 Sn 34 ± 1 69 ± 24 Li <0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo <0.007 0.242 Na 32.0 718 Mo <0.001 0.020 Ni <0.04 1.27 Pb 0.095 0.527 The ultrasonic extraction proposePb 0.095 0.527 The ultrasonic extraction proposePb 0.095 0.527 The ultrasonic extraction proposePb 0.095 0.527 Nevertheless, the 34 elements fouComponent Analysis (Fig. 2) suggesSm <0.001 0.005 Sn <0.05 0.128 ReferenceSr 0.02 0.505 Camin et al. (2010) Food Chemis,Ti <0.2 0.766 This research was funded by LIKE orV 0.001 0.221 This research was funded by LIKE or	Dy	< 0.001	0.003	Mo	39 ± 0	107 ± 11	
Fe < 2.3 101K23.013337Pb 69 ± 1 55 ± 35 La <0.001 0.023 Sn 34 ± 1 69 ± 24 Li <0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo <0.007 0.242 Na 32.0 718 Nd <0.007 0.242 Na 32.0 718 Nd <0.001 0.020 The ultrasonic extraction proposedNi <0.04 1.27 The ultrasonic extraction proposedPb 0.095 0.527 The ultrasonic extraction proposedPb 0.095 0.527 The ultrasonic extraction proposedPb 0.001 0.005 The ultrasonic extraction proposedRb <0.014 8.47 Nevertheless, the 34 elements fourSb <0.003 0.011 Nevertheless, the 34 elements fourSc <0.003 0.014 ReferenceSr 0.02 0.505 Camin et al. (2010) Food ChemissTi <0.2 0.766 Camin et al. (2010) Food ChemissV 0.001 0.0221 This research was funded by LIKE or	Er	< 0.001	0.002	Ni	80 ± 2	67 ± 32	
K23.013337La<0.001	Fe	<2.3	101				
Li <0.02 0.173 Ti 33 ± 1 $-$ Mg 4.50 361 V 54 ± 1 107 ± 8 Mo <0.007 0.242 V 54 ± 1 107 ± 8 Mo <0.007 0.242 V 54 ± 1 107 ± 8 Ma 32.0 718 The ultrasonic extraction proposedNd <0.001 0.020 The ultrasonic extraction proposedNi <0.04 1.27 The ultrasonic extraction proposedPb 0.095 0.527 The ultrasonic extraction proposedPr <0.001 0.005 The ultrasonic extraction proposedRb <0.014 8.47 Nevertheless, the 34 elements fouSb <0.003 0.011 Nevertheless, the 34 elements fouSc <0.003 0.048 Straceability of their origin.Sn <0.05 0.128 ReferenceSr 0.02 0.505 Camin et al. (2010) Food ChemistU <0.001 0.002 This research was funded by LIKE orV 0.001 0.221 This research was funded by LIKE or	Κ	23.0	13337	Pb	69 ± 1	55 ± 35	
Mg 4.50 361 V 53 ± 1 I Mg 4.50 361 V 54 ± 1 107 ± 8 Mo <0.007 0.242 V 54 ± 1 107 ± 8 Mo <0.007 0.242 V 54 ± 1 107 ± 8 Nd <0.007 0.242 V 54 ± 1 107 ± 8 Nd <0.001 0.020 V V 54 ± 1 107 ± 8 Nd <0.001 0.020 V V 54 ± 1 107 ± 8 Nd <0.001 0.020 V V V V V V Ni <0.001 0.020 V V V V V V V Ni <0.014 8.47 V V V V V Nevertheless, the 34 clements fou V V V V V V V V Nevertheless, the 34 clements fou V	La	< 0.001	0.023	Sn	34 ± 1	69 ± 24	
Mg 4.50 361 V 54 ± 1 107 ± 8 Mn <0.06 4.15 V 54 ± 1 107 ± 8 Mo <0.007 0.242 Na 32.0 718 Nd <0.001 0.020 Ni <0.04 1.27 Pb 0.095 0.527 The ultrasonic extraction proposed oil due to much lower detection limite elements obtained recoveries are not time ect.) is required.The ultrasonic extraction proposed oil due to much lower detection limite elements obtained recoveries are not time ect.) is required.Rb <0.014 8.47 Nevertheless, the 34 elements fou Component Analysis (Fig. 2) sugges traceability of their origin.Sn <0.001 0.005 ReferenceSr 0.02 0.505 Camin et al. (2010) Food Chemistical Components funded by UKE or their proposed of their proposed oil due to much lower detection limite elements four component Analysis (Fig. 2) sugges traceability of their origin.Sn <0.02 0.505 Camin et al. (2010) Food Chemistical Component funded by UKE or their proposed of	Li	< 0.02	0.173	Ti	33 ± 1	_	
Mn <0.06 4.15 Mo <0.007 0.242 Na 32.0 718 Nd <0.001 0.020 Ni <0.04 1.27 Pb 0.095 0.527 Pb 0.095 0.527 Pr <0.001 0.005 Rb <0.014 8.47 Sb <0.003 0.011 Sc <0.003 0.011 Sc <0.003 0.048 Sm <0.005 0.128 Sr 0.02 0.505 Ti <0.2 0.766 U <0.001 0.002 V 0.001 0.221 This research was funded by LIKE or	Mg	4.50	361		<i>C A</i> + 1		
Na 32.0 718 Nd <0.001 0.020 Ni <0.04 1.27 Pb 0.095 0.527 Pr <0.001 0.005 Rb <0.014 8.47 Sb <0.003 0.011 Sc <0.003 0.011 Sc <0.003 0.048 Sm <0.001 0.005 Ti <0.2 0.505 Ti <0.2 0.766 U <0.001 0.002 V 0.001 0.221	Mn	< 0.06	4.15	V	54 ± 1	$10/\pm 8$	
Nd < 0.001 0.020 Ni < 0.04 1.27 Pb 0.095 0.527 Pr < 0.001 0.005 Rb < 0.014 8.47 Sb < 0.003 0.011 Sc < 0.003 0.011 Sc < 0.003 0.048 Sm < 0.001 0.005 Sn < 0.05 0.128 Sr 0.02 0.505 Ti < 0.2 0.766 U < 0.001 0.002 V 0.001 0.221 ConclusionsConclusionsConclusionsThe ultrasonic extraction proposedoil due to much lower detection limitelements obtained recoveries are nottime ect.) is required.Nevertheless, the 34 elements fouComponent Analysis (Fig. 2) suggestraceability of their origin.ReferenceCamin et al. (2010) Food ChemistV 0.001 0.221	Mo	< 0.007	0.242				
Nd < 0.001 0.020 Ni < 0.04 1.27 The ultrasonic extraction proposePb 0.095 0.527 oil due to much lower detection limitPr < 0.001 0.005 elements obtained recoveries are notRb < 0.014 8.47 time ect.) is required.Sb < 0.003 0.011 Nevertheless, the 34 elements fouSc < 0.003 0.048 Component Analysis (Fig. 2) suggesSm < 0.05 0.128 ReferenceSr 0.02 0.505 Camin et al. (2010) Food ChemistTi < 0.2 0.766 AcknowledgmentsV 0.001 0.221 This research was funded by LIKE or	Na	32.0	718	Conclu			
Nu 10001 1217 Pb 0.095 0.527 Pr <0.001 0.005 Rb <0.014 8.47 Sb <0.003 0.011 Sc <0.003 0.011 Sc <0.003 0.048 Sm <0.001 0.005 Sn <0.05 0.128 Sr 0.02 0.505 Ti <0.2 0.766 U <0.001 0.002 V 0.001 0.221 This research was funded by UKE or	Nd	< 0.001	0.020				
Pr < 0.001 0.005 Rb < 0.014 8.47 Sb < 0.003 0.011 Sc < 0.003 0.011 Sc < 0.003 0.048 Sm < 0.001 0.005 Sn < 0.05 0.128 Sr 0.02 0.505 Ti < 0.2 0.766 U < 0.001 0.002 V 0.001 0.021 This research was funded by UKE or	Ni	< 0.04	1.27	 oil due to much lower detection limits elements obtained recoveries are not s time ect.) is required. Nevertheless, the 34 elements four Component Analysis (Fig. 2) suggests 			
Rb <0.001 0.005 Rb <0.014 8.47 Sb <0.003 0.011 Sc <0.003 0.011 Sc <0.003 0.048 Sm <0.001 0.005 Sn <0.05 0.128 Sr 0.02 0.505 Ti <0.2 0.766 U <0.001 0.002 V 0.001 0.022 This research was funded by UKE or	Pb	0.095	0.527				
Red $(0.014$ (0.47) Sb <0.003 0.011 Sc <0.003 0.048 Sm <0.001 0.005 Sn <0.05 0.128 Sr 0.02 0.505 Ti <0.2 0.766 U <0.001 0.002 V 0.001 0.021 This research was funded by LIKE graves	Pr	< 0.001	0.005				
So (0.003) (0.011) Sc <0.003 0.048 Sm <0.001 0.005 Sn <0.05 0.128 Sr 0.02 0.505 Ti <0.2 0.766 U <0.001 0.002 V 0.001 0.221 This research was funded by LIKE or	Rb	< 0.014	8.47				
Set (0.003) (0.016) traceability of their origin.Sm <0.001 0.005 traceability of their origin.Sn <0.05 0.128 ReferenceSr 0.02 0.505 Camin et al. (2010) Food ChemistTi <0.2 0.766 AcknowledgmentsU <0.001 0.021 This research was funded by LIKE or	Sb	< 0.003	0.011				
Sin <0.001 0.003 Sin <0.05 0.128 Sr 0.02 0.505 Camin et al. (2010) Food Chemist Ti <0.2 0.766 Camin et al. (2010) Food Chemist U <0.001 0.002 Acknowledgments V 0.001 0.221 This research was funded by LIKE or	Sc	< 0.003	0.048				
Sr 0.02 0.505 Camin et al. (2010) Food Chemist Ti <0.2	Sm	< 0.001	0.005				
Ti <0.2	Sn	< 0.05	0.128	Refere	nce		
Ti <0.2	Sr	0.02	0.505	Cam	in et al. (2010)) Food Chemist	
V 0.001 0.221 This research was funded by UKE or	Ti	< 0.2	0.766				
V 0.001 0.221 This research was funded by UKE or	U	< 0.001	0.002	Ackno	wladamante	2	
V <0.001 0.009 This research was funded by UKF gr	V	0.001	0.221	This research was funded by UKF gra			
1 < 0.001 = 0.008	Y	< 0.001	0.008				
Yb <0.001 0.007 We would like to thank Anton Paar C	Yb	< 0.001	0.007	We wou	We would like to thank Anton Paar G		

Fig. 1 Mean concentrations of elements in blank (n = 10, bars are SD)(A) and detection limits calculated as 3 SD of the blank (**B**) for the two methods.

ed by Camin et al. (2010) is a promising method for determination of elements in olive its compared to microwave digestion and good reproducibility. However, for some satisfactory and further research on the extraction conditions (acid mitxure, extraction

and in the six olive oils were sufficient to discriminate the samples through Principal sting that multielement composition of olive oils is different enough to be used for

stry, 118:901–909 http://dx.doi.org/10.1016/j.foodchem.2008.04.059

rant: 1B, Contract no 23/15.

GmbH for providing Multiwave GO microwave oven.

